a2 United States Patent

Ante et al.

US010599560B2

US 10,599,560 B2
Mar. 24, 2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)
")

@

(22)

(65)

(1)

(52)

(58)

METHOD AND SYSTEM FOR IMPROVED
PERFORMANCE OF A VIDEO GAME
ENGINE

Applicant: Unity IPR ApS, Copenhagen K (DK)

Inventors: Joachim Christoph Ante, Copenhagen
(DK); Tim Johansson, Vintrie (SE)
Assignee: Unity IPR ApS, Copenhagen K (DK)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 16/006,610
Filed: Jun. 12, 2018

Prior Publication Data

US 2019/0377672 Al Dec. 12, 2019

Int. CL.

GO6F 17/30 (2006.01)

AG63F 13/00 (2014.01)

GO6F 12/02 (2006.01)

GO6F 8/30 (2018.01)

AG63F 13/77 (2014.01)

U.S. CL

CPC ... GO6F 12/0223 (2013.01); A63F 13/00

(2013.01); A63F 13/77 (2014.09); GO6F 8315
(2013.01); A63F 2300/60 (2013.01); A63F
2300/8082 (2013.01); GO6F 2212/15 (2013.01)
Field of Classification Search
CPC i GOG6F 17/30; A63F 13/00
See application file for complete search history.

100
™
&

(56) References Cited

U.S. PATENT DOCUMENTS

7,912,869 B1* 3/2011 Jas GO6F 17/30292
707/803

2009/0019249 Al 1/2009 Kessler
2016/0379116 A1* 12/2016 Lottiniccoeeunne GO6N 5/02
706/46
2017/0154095 Al* 6/2017 Milijasevic A63F 13/69
2017/0177543 Al* 6/2017 Jha GO6F 9/30098
2018/0068040 Al* 3/2018 Lewis ... GOG6F 9/5061

OTHER PUBLICATIONS

Canadian Application Serial No. 3,009,230, Office Action dated Jun.
5, 2019, 5 pgs.

“Korean Application Serial No. 10-2018-0072069, Notice of Pre-
liminary Rejection dated Sep. 10, 20197, w/ English Translation, 4
pgs.

* cited by examiner

Primary Examiner — Charles Rones
Assistant Examiner — Tian-Pong Chang

(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

Methods and apparatuses to improve the performance of a
video game engine using an Entity Component System
(ECS) are described herein. In accordance with an embodi-
ment, the ECS creates and uses entities, to represent game
objects, which are constructed entirely using value data
types. The ECS constructs the entities within a memory in a
densely packed linear way, and whereby the ECS constantly
monitors (e.g., during game play) objects within a game and
adjusts the entity distribution within the memory so that a
maximum density of memory usage is maintained in real
time as the game is being played.

20 Claims, 15 Drawing Sheets

165

‘1 oPY

CADHE

3.(3{\

19
k& 2

108,

GRU

108
&E HQ DEVICES

BOS DEVIDE fwg
WMEMORY w2
(.f’
GAME ENGINE /}
flm
ECS MoDUWE [
118

PHSPLAY

0

U.S. Patent Mar. 24, 2020 Sheet 1 of 15 US 10,599,560 B2

188

1%‘35\» ECS DEVICE {_}ag
ml\g 104__ { TPY MEMORY 112 1
L.
CAGHE GAME ENGINE
114
EOS MODULE P
188
‘“'-«.)
= GPU
1{3&\ 118
W HO DEVICES L
CHSPLAY §

U.S. Patent Mar. 24, 2020 Sheet 2 of 15 US 10,599,560 B2

102

N

MEMORY i\

24 2044 284 204
R S

ENTITY 1D | COMPONENT & COMPONENT 8 | COMPONENT C
%W H DATS DRATA DATA DATA ERR

N ~ J
- CHUNK X
)

200

Fig. 2A

U.S. Patent Mar. 24, 2020 Sheet 3 of 15 US 10,599,560 B2
132\
MERGRY \
282, AR 2048 Aga; 0% 2085 2088 208¢ Q8L
3 2 S 2 3 2
ERTITY {0 | COMPUNENT | COMPONENT | TORPORERT ENTITY I ICOBPONENT I COMPORENT [COMPORERNT [COMPONENT
LR DAra A DAYS B RETR L 8RTA LR DAYR ATRTA O SRR B ORIR F QTR BER
\ —-/ ., /
Y Ve
SHU K ¢
{" {’CKUP&K i
__,./ ,.-f'”j
2608 pasity

Fig. 28

U.S. Patent Mar. 24, 2020 Sheet 4 of 15 US 10,599,560 B2

o

Fig. 3

U.S. Patent Mar. 24, 2020 Sheet 5 of 15 US 10,599,560 B2

INTEGRATING AN BNTITY INTG AN ARCHETYRE
& 'me\

m{ [sYARY)
N

“m“‘} THE ECS MODULE RECEIVES AN ENTITY
"~ WHICHM IS TO BE INTEGRATED INTO &
CHURK

w

408
% THE 808 MODULE CONMPARES THE
COMPONENTS N THE ENTITY WITH

COMPONENTE 1M EXISTING ARCHETYPRS

TO CLASSIFY THE BNTITY INTO AN BNTITY

ARCHETYPE
% &3
@gg\\ M”MM‘ &‘3\
Ny W\”‘“\ THE ECS MODULE DREATES A NEW
a:\\:' W@Tﬁ g;@%gﬁﬁzﬁ‘g@ﬁh}w&w CHUNE 1N MEMORY FOR A NEW
. = ARCHETYRE
.NT,_,
43
Yia 2\2 ¥
THE E0% MODULE CREATES WITHIN
A48 THE DHUNI & NEW COMPONENT
£, ARRAY POR EACH OONMPDNENT
FOR EACH COMPONENT IN THE TYPE WITHIN THE ENTITY AND
SHTTY, THE ECS MOBULE ADDS FOPULATES THE ARRAYS WITH THE
DATA FROM THE COMPONENT TO COMPONENT DATA
THE ASSOCIATED EXISTING

COMPQMENT ARRAY INTHE
BEXNISTING OHLUNK RELATED TO THE
EXISTING ARCHETYPE

Fig. 4A

U.S. Patent

Rt

Mar. 24, 2020 Sheet 6 of 15 US 10,599,560 B2

4232

U GAMEPLAY EVENT
{CREATION OF & NEW RNTITY}

-
<77 18 ANEW ENTITY

T NEEDEDT
o

¥ES

R
" THE ECS MODULE CREATES (E.G,, DUE TO
THE CAMEPLAY EVENT) A NEW BENTITY
ACCORDING TO A SET OF RULES 8.6,
FROVIDED BY THE GAME]L THE CREATED

ENTITY INQLUDING AT LEAST ONE
COMPONENY

408, ¥

Focd

THE ECS MODULE INTEGRATES THE NEW
ENTITY INTO AN ENTITY ARCHETYRE

Fig. 4B

U.S. Patent

432

=

852

458

Find

Mar. 24, 2020 Sheet 7 of 15

US 10,599,560 B2

CAMEPLAY RVENT

N
.
w,,a"" ” \&A

=

o HAS AN EXISTING

Q@i‘i’f’i’f‘?‘ BEEN MODIF ﬁiﬁfg‘_,m*“’

- P
\ e

o

o

MO

YES

¥
BASED ON THE MODIFICATION OF AN
EXISTING ENTITY, THE ECS MODULE

DETERMINES IF THE ARCHETYPE FOR THE
MCODIFIEDR ENTITY HAS CHANGED

308
4 + 2
=i S
T
~FAS THE ARCHETYFE™
", CHANGED?Y

THE EOS MODIRE
INTEGRATES THE
ROMMED ENTITY INTO
AN ENTITY ARCHETYRE

™

e

\M"\.\ o
T - g
e T \\

V4 N,
Ve VES
7 N
NG \,
V; \\
s N

ﬁ‘«‘ :§$€K\ \«

N

THE ECS MODULE UPDATES (E.G., WITH
REW DATA FROM THE CAMEPRLAY EVENT}
THE DATA (N THE EXISTING COMPONENTY

ARRAYE RELATED 7O THE BONFERR
ENTTTY

Fig. 4C

THE BCE MODULE DRLETES DATA
RELATED 7O THE MODEIED ENTITY FROM
THE OLD ARCHETYPE COMPONENT DATA

ARRAYS

N |

THE ECS MODULE MOVES THE EXISTING
ENTITY DATA TO BILL ANY EMPTY SPACE
I THE COMPONENT DATA ARRAYS
CREATED BY THE DELETION

U.S. Patent Mar. 24, 2020 Sheet 8 of 15 US 10,599,560 B2

S0

802
i \ THE ECS MODULE RECRIVES A FIRST LIBT OF
COMPONENTS, & SECOND LISTOF
COMPONENTS AND INSTRUCTIONS

¥

54 THE BECS MODULE SEARCHES THROUGH ALL
e EXISTING ARCHETYPES TO FIND ARCHETYPES
4 THAT INQLUDE ALL OF TRE GNE OR MORE
COMPONENTS IN THE SECORD USTOP
COMPOMENTS
%
536
FOR EACH FQUND ARCHETYRE, THE ECS

e

MODULE FINDS THE ONE OR MORE CHUNKS
ASSGUIATED WITH THE FOUND ARCHETYPRE
AND FOR BEAGH FOURD CTHUNEK ITERATES
THROUGH AND MODIFIES THEREIN THE ONE
OF MORE COMPONENTS FROM THE RIRST LIST
OF COMPONENTS

£

Fig. 5

U.S. Patent Mar. 24, 2020 Sheet 9 of 15 US 10,599,560 B2

13 3 W

Fig. 6A

RO4H

o
10

U.S. Patent Mar. 24, 2020 Sheet 10 of 15 US 10,599,560 B2

Fig. 6B

U.S. Patent Mar. 24, 2020 Sheet 11 of 15 US 10,599,560 B2

i

RIEK &

w,
o

Fig. 6C

RE

U.S. Patent Mar. 24, 2020

Sheet 12 of 15

US 10,599,560 B2

B iy

-
.

g
v

THE ECS MODULE RECEIVES AN OOF GAME OBJECTTOBE
CONVERTED TO AN BNTITY

¥

&M\Z

THE BCS MODULE ANALYIES THE DATA FROM THE QOF
GAME QRIRCT T3 EXTRALT & LIBT OF GAME OBJIRCY
COMPONENTS {(E.G. DETERMINE WHICH COMPONENTS ARE
PRESENT IN THE GAME OBJIECT)

&%ﬁ.\z
k1

THE BECS MODULE EXTRACTS THE OOP GAME
OBRIECT VARIABLE DATA FOR BACH
EXTRACTED COMPONENT

ﬁﬁ&\
3]

THE ECOMODIAE USES THE LIST OF
COMPONENTS TO CLASSIFY THE GOP ORIECY
TG AN ENTITY ARCHETYPRE 8Y CORMPARING
THE LIST WITH EXISTING ARCHETYPES I THE
ECS ENVIROKMENT

&34,

o

\}“w“‘/&
/,«"”‘353 TRE QETERMENEQN\\

< SRCHETYPE AN BXISTING W&M

ARCHETYRE? 7 N

T

o
e
o~

S

M

YES

t

T 818

" N

FOR BACH COMPONRNT (N THE QOP GAME
ORIECT, THE ECS MODULE ATDE THE DATA
FROM THE COMPONENT TO THE
ASZOCIATED ECS COMPONENT DATA
ARKRAY ¢ THE MATCHED EXISTING
ARCHETYPE CHUNK

Fig. 7A

U.S. Patent

Mar. 24, 2020 Sheet 13 of 15

FROM 810
o~

816,

%

US 10,599,560 B2

THE BECS CREATES A NEW ARCHETYPE
CHUNK FOR THE ARCHETYPE

81
¥

THE BECE CREATES A NEW COMPONENT
ARRAY FOR EACH COMPONENT TYPE
WITHIN THE CHUNK AND POPULATES THE
ARRAYS WATH THE COMPONENT DATA

Fig. 78

US 10,599,560 B2

Sheet 14 of 15

Mar. 24, 2020

U.S. Patent

Fig. 8

US 10,599,560 B2

—
3«
Ren

i
L

N

i

H
i

i
3.
v\

LRGA

Sheet 15 of 15

INE-READAB

3

Wk

&
LHELEIN

v\‘-.-.““-'--\\\ N _?A.”‘-.v.\\vu-l\.""" y

B COMPO

LES

Lo

Mar. 24, 2020

HERH

P
[ce

U.S. Patent

Fig. 8

US 10,599,560 B2

1
METHOD AND SYSTEM FOR IMPROVED
PERFORMANCE OF A VIDEO GAME
ENGINE

TECHNICAL FIELD

The present disclosure relates to the field of software tools
for improving the performance of a video game engine.

BACKGROUND OF THE INVENTION

Most modern video game development is done using
object oriented programming (OOP), wherein programming
objects are used for each element of a game. The program-
ming objects that represent elements within a game are often
called game objects or game entities and are referred to
herein as game objects. A game object can represent almost
anything in a game, including characters, guns, treasures,
trees, backgrounds, effects, etc. A game object is typically
defined as an instance of an OOP class structure that
includes methods and variables for the game object. Within
computer memory, an OOP object (e.g., an instance of a
class) is a structure that includes data and pointers to data in
other locations within memory. For example, a game char-
acter might belong to a class that has values for position,
orientation, size, mesh, etc., and also have methods defining
behavior for the character. The memory location that con-
tains the character game object includes data and can include
pointers to other memory locations which contain more data
for the character game object.

Current object oriented programing is not optimized for
performance due in part to the use of reference value objects
that contain pointers to data rather than containing data
directly. Existing game development technology often uses
reference value structures to define objects within a game.
This is based on the concept of an object within the object
oriented programming framework and is used for simplicity
of programming (e.g., since the behavior and attributes of a
programming object align well with those of a game object).
However, object oriented programming may be optimized
on a conceptual level and for ease of programming, but it is
not always optimized for performance with respect to video
game play. The main reason for the lack of optimized
performance is that OOP programing does not automatically
provide the optimum use of memory. OOP objects often
contain pointers to data while the data itself is scattered
randomly over distant memory locations. The result is that
game object data is often in random places within memory
and often contains pointers (e.g., to data) in other random
locations within memory. In order to access the data for one
or more characters (e.g., to determine the character location
in a scene), a game engine will often have to access several
separate random memory locations. There is also no hard
guarantee of the relative location of data within memory for
two different game objects. Accessing random memory
locations for all game objects in a video game scene which
runs at 60 frames per second (fps) or more is inefficient,
especially considering the large amount of game objects
which are typically in play during any given video game
frame. Having game object data scattered over memory
creates an inefficiency due to memory access time (e.g., the
time it takes a central processing unit (CPU) to access a
memory location, which is typically hundreds of CPU cycles
each time a memory location is accessed). All memory
accessing takes time; however, having to access memory in
random distant locations requires additional time because
the advantages of hardware prefetching are negated. The

10

20

25

30

35

40

45

50

55

60

2

additional time it takes to access the scattered data within
memory lowers the performance of executed game code at
runtime. This puts limitations, for a given CPU speed, on the
number of game objects that can be active in a frame during
game play if a frame rate is to be maintained (e.g., 60 frames
per second for typical games). This is particularly important
for virtual reality applications which require 90 frames per
second for minimum quality visual output. Modern game
design improves performance by incorporating graphical
processing units (GPUs) to offload processing from the
CPU, as well as multithreaded coding techniques to paral-
lelize the processing of game data over multiple CPU/GPU
cores. However, these techniques do not overcome the
fundamental issue of accessing separate random memory
locations for game objects.

Game performance can also be improved by considering
data oriented programming methodology as opposed to
object oriented programming methodology, however, data
oriented programming requires a high degree or knowledge
for a game developer, and is done manually, and is specifi-
cally targeted to each game. This is out of reach for a large
portion of game developers and game designers who have
only a basic knowledge of programming methodology.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages of the present invention
will become apparent from the following detailed descrip-
tion, taken in combination with the appended drawings, in
which:

FIG. 1 is a schematic illustrating an entity component
system (ECS) device in an ECS system, in accordance with
one embodiment;

FIG. 2A is a schematic illustrating a memory layout for a
chunk in an ECS system, in accordance with one embodi-
ment;

FIG. 2B is a schematic illustrating a memory layout
within two chunks in an ECS system, in accordance with one
embodiment;

FIG. 3 is a schematic illustrating a memory layout for a
component data array within a chunk in an ECS system, in
accordance with one embodiment;

FIG. 4A is a schematic illustrating a method for integrat-
ing an entity into an archetype within an ECS system, in
accordance with one embodiment;

FIG. 4B is a schematic illustrating a method for creating
an entity within an archetype within an ECS system, in
accordance with one embodiment;

FIG. 4C is a schematic illustrating a method for modify-
ing an entity within an ECS system, in accordance with one
embodiment;

FIG. 5 is a schematic illustrating a method for modifying
entity data within an ECS system, in accordance with one
embodiment;

FIGS. 6A, 6B and 6C illustrate a method for deleting an
entity within an ECS system, in accordance with one
embodiment;

FIGS. 7A and 7B show a method for converting an object
oriented programming object to an entity within an ECS
system, in accordance with one embodiment;

FIG. 8 is a block diagram illustrating an example software
architecture, which may be used is conjunction with various
hardware architectures described herein; and

FIG. 9 is a block diagram illustrating components of a
machine, according to some example embodiments, config-
ured to read instructions from a machine-readable medium

US 10,599,560 B2

3

(e.g., a machine-readable storage medium) and perform any
one or more of the methodologies discussed herein.

It will be noted that throughout the appended drawings,
like features are identified by like reference numerals.

DETAILED DESCRIPTION

The description that follows describes systems, methods,
techniques, instruction sequences, and computing machine
program products that constitute illustrative embodiments of
the disclosure. In the following description, for the purposes
of explanation, numerous specific details are set forth in
order to provide an understanding of various embodiments
of the inventive subject matter. It will be evident, however,
to those skilled in the art, that embodiments of the inventive
subject matter may be practiced without these specific
details.

Current object-oriented programing is not optimized for
performance due in part to the use of reference value objects
that contain pointers to data rather than containing data
directly. Existing game development technology often uses
reference value structures to define objects within a game.
This is based on the concept of an object within the
object-oriented programming framework and is used for
simplicity of programming (e.g., since the behavior and
attributes of a programming object align well with those of
a game object). However, object oriented programming may
be optimized on a conceptual level and for ease of program-
ming, but it is not always optimized for performance with
respect to video game play. The main reason for the lack of
optimized performance is that OOP programing does not
automatically provide the optimum use of memory. OOP
objects often contain pointers to data while the data itself is
scattered randomly over distant memory locations. The
result is that game object data is often in random places
within memory and often contains pointers (e.g., to data) in
other random locations within memory. In order to access
the data for one or more characters (e.g., to determine the
character location in a scene), a game engine will often have
to access several separate random memory locations. There
is also no hard guarantee of the relative location of data
within memory for two different game objects. Accessing
random memory locations for all game objects in a video
game scene which runs at 60 frames per second (fps) or
more is inefficient, especially considering the large amount
of game objects which are typically in play during any given
video game frame. Having game object data scattered over
memory creates an inefficiency due to memory access time
(e.g., the time it takes a central processing unit (CPU) to
access a memory location, which is typically hundreds of
CPU cycles each time a memory location is accessed). All
memory accessing takes time; however, having to access
memory in random distant locations requires additional time
because the advantages of hardware prefetching are negated.
The additional time it takes to access the scattered data
within memory lowers the performance of executed game
code at runtime. This puts limitations, for a given CPU
speed, on the number of game objects that can be active in
a frame during game play if a frame rate is to be maintained
(e.g., 60 frames per second for typical games). This is
particularly important for virtual reality applications which
require 90 frames per second for minimum quality visual
output. Modern game design improves performance by
incorporating graphical processing units (GPUs) to offload
processing from the CPU, as well as multithreaded coding
techniques to parallelize the processing of game data over
multiple CPU/GPU cores. However, these techniques do not

20

40

45

55

4

overcome the fundamental issue of accessing separate ran-
dom memory locations for game objects.

Game performance can also be improved by considering
data oriented programming methodology as opposed to
object oriented programming methodology, however, data
oriented programming requires a high degree of knowledge
for a game developer, and is done manually, and is specifi-
cally targeted to each game. This is out of reach for a large
portion of game developers and game designers who have
only a basic knowledge of programming methodology.

Methods and apparatuses to improve the performance of
a video game engine using an Entity Component System
(ECS) are described herein. In accordance with an embodi-
ment, the ECS eliminates (e.g., during game development
and at runtime) the use of OOP reference value structures
(e.g., pointers) to define game objects. Instead, the ECS
defines game objects with data value structures (e.g., a
‘struct’ from C#) which do not use pointers to store data. In
this sense, a same object as described herein is not an
‘object” as defined within object oriented programming
framework; accordingly, a game object as described herein
(e.g., within the ECS) is referred to as an ‘entity’.

In accordance with an embodiment, the ECS creates and
uses entitles which are constructed entirely using value data
types (e.g., structs in C# which do not use pointers). An
entity is a collection of data that is used to represent anything
in a video game, including characters, guns, treasures, trees,
backgrounds, animation, effects (e.g., video and sound), 3D
points, and more. The ECS groups a plurality of entities into
an archetype wherein the entities share similar attributes
(e.g., components as described herein) and memory layout.
The ECS constructs the entities (e.g., including the compo-
nents therein) within a memory in a densely packed and
linear way. The ECS constantly monitors (e.g., during game
play) entities within a game and adjusts the entity distribu-
tion (e.g., including the data therein) within the memory so
that a maximum density of memory usage is maintained in
real time as the game is being played thus allowing for high
performance due to efficient memory access (e.g., using
hardware prefetching) and multithreading. The ECS system
provides high performance for game situations that include
a large number (e.g., hundreds or thousands) of similar game
objects (e.g., non-player characters, rockets, spaceships,
etc.).

Turning now to the drawings, systems and methods for an
Entity Component System (ECS) which is configured to
provide high processing performance for a video game
engine (e.g., to display video games or simulations) in
accordance with embodiments of the invention are illus-
trated. In accordance with an embodiment, FIG. 1 shows an
example entity component system 100 configured to provide
ECS functionality. The ECS includes an ECS device 101
which includes one or more central processing units 104
(CPUs), and graphics processing units 106 (CPUs). The
CPU 104 is any type of processor, processor assembly
comprising multiple processing elements (not shown), hav-
ing access to a memory 102 to retrieve instructions stored
thereon, and execute such instructions. Upon execution of
such instructions, the instructions cause the ECS device 101
to perform a series of tasks as described herein. The CPU
can include a cache memory 105 within the CPU.

The ECS device 101 also includes one or more input
devices 108 such as, for example, a keyboard or keypad,
mouse, pointing device, and touchscreen. The ECS device
101 further includes one or more display devices 110, such
as a computer monitor, a touchscreen, and a head mounted
display (HMD), which may be configured to display a video

US 10,599,560 B2

5

game environment or virtual simulation environment to the
user. The display device 110 is driven or controlled by the
one or more GPUs 106 and optionally the CPU 104. The
GPU 106 processes aspects of graphical output that assists
in speeding up rendering of output through the display
device 110.

The ECS device 101 also includes a memory 102 con-
figured to store a game engine 112 (e.g., executed by the
CPU 104 or GPU 106) that communicates with the display
device 110 and also with other hardware such as the input
device(s) 108 to present a game (e.g., video game) or
simulation to a user (not shown in the Figure). The game
engine 112 would typically include a physics engine, colli-
sion detection, rendering, networking, sound, animation, and
the like in order to provide the user with a video game (or
simulation) environment. The game engine 112 includes an
ECS module 114 that provides various entity component
system functionality as described herein. Each of the ECS
module 114, and game engine 112 include computer-execut-
able instructions residing in the memory 102 that are
executed by the CPU 104 and optionally with the GPU 106
during operation. The ECS module 114 may be integrated
directly within the game engine 112, or may be implemented
as an external piece of software (e.g., a plugin).

In accordance with an embodiment, the ECS module 114,
executing on the ECS device 101, may be configured to
create and manipulate an entity, which includes data, and
which is a representation of a game object within a scene of
a video game (or simulation). The entity can represent any
game object (e.g., any virtual object within a game or
simulation) including characters, props, scenery and effects.
The entity includes data (e.g., entity data) that describes all
aspects, properties and behaviors of the game object which
it represents over time. The data includes data describing the
visual aspects (texture, color, size, shape, orientation and the
like) of the game object; and the data includes data describ-
ing the behavior for the game object (e.g., movement of the
object and the physics of interaction with other objects in the
environment). The behavior of an entity is defined by the
processes (e.g., functions) that modifies data of an entity.

In accordance with an embodiment, the entity data
includes one or more small groups of data referred to herein
as component data. In accordance with an embodiment,
during execution (e.g., at runtime during game play) the
ECS module 114 creates a component for an entity within a
data value array structure (e.g., a ‘struct’ from within the C#
programing language), wherein the clements within the
array are laid out in contiguous memory blocks within the
memory 102. A component does not contain a pointer to data
in other distant locations within a memory 102. A compo-
nent includes data that is associated with a logical grouping
of data and behaviors which are used for adding function-
ality to a single entity. A component can add any type of
functionality to an entity, including visual attributes and
interaction with other components (e.g., within the same
entity or within a different entity). The combination of
components within an entity, and the data within the com-
ponents, contribute to the properties and functionality of the
entity in the game world during game play. For example,
there can be a camera component which gives an entity the
properties of a camera. There can be a light component
which gives an entity the properties of a light. For example,
a component could define the position, rotation and scale of
an entity within a game world. For simplicity of explanation,
we will refer to the component that defines the position,
rotation and scale of an entity as the transform component
since modifying the transform component of an entity would

10

15

20

25

30

35

40

45

50

55

60

65

6

move, rotate or scale the entity (i.e., transform it) within the
game world. As another example of a component, a com-
ponent referred to herein as a rigidbody component could
enable physical behavior for an entity by allowing the entity
to be affected by gravity within the game world. Still another
example of a component could be a component, referred to
herein as a collider component, that defines the shape of an
entity for the purposes of a physical collision with one or
more other entities.

In a typical game or simulation, a plurality of entities have
some overlap in the type of components they contain (e.g.,
two or more entities will have one or more components of
the same type). For example, consider a game that includes
five entities within a scene and wherein each entity has a
transform component (e.g., with the transform data being
independent for each entity). In accordance with an embodi-
ment, when two or more entities contain the exact same
number and type of components, the entities are referred to
herein as an archetype. All entities with the same archetype
have the same number and type of components and therefore
share similarities with respect to the area which they occupy
in memory 102. However, even though all entities with the
same archetype have the same number and type of compo-
nents, the specific component data for an entity is indepen-
dent (and usually different) from the other entities. In
accordance with an embodiment, the ECS module 114
groups (e.g., places) a plurality of entities of an archetype
(e.g., all the entities of the archetype) contiguously together
in memory 102 (e.g., as described with respect to FIG. 2A,
2B, 3 and with respect to the methods described in FIGS.
4A, 4B and 4C). A location in memory 102 where the
plurality of entities of a single archetype are grouped
together is referred to herein as a chunk. A chunk is a
contiguous block (e.g., a section or area) within memory 102
containing entities sharing the same archetype. In accor-
dance with some embodiments, a single archetype is con-
tained within a single chunk. In accordance with other
embodiments, a single archetype can be divided into two or
more chunks if a single chunk is not large enough to contain
the archetype. In accordance with an embodiment a chunk
has a fixed size in memory (e.g., 16 kilobytes or 64 kilo-
bytes)

In accordance with an embodiment, and shown in FIG.
2A, is a schematic diagram of a data layout for a chunk 200
in memory 102. Data within a chunk 200 is divided (e.g., by
the ECS module 114) into a plurality of sections, wherein a
section contains the data for a single type of component
(e.g., atransform component) for all entities in the archetype
associated with the chunk 200. In some embodiments the
data within a section is created by the ECS module 114
within a data value structure such as an array. Throughout
the description herein, an array which contains all data
within a section (e.g., for a component type) is referred to as
a component data array. In accordance with an embodiment,
and shown in FIG. 2A, the plurality of different component
data arrays within a chunk 200 are placed by the ECS
contiguously in memory 102 so that all the component data
is laid out linearly and compact (e.g., contiguously) within
memory 102. FIG. 2A shows an example wherein a chunk
200 contains an archetype that has a plurality of entities
(e.g., 5 entities) that all contain three components: a first
component (component ‘A’), a second component (compo-
nent (‘B’), and a third component (component ‘C’). The data
for component A is placed by the ECS module 114 in a first
data array in a first section 204A. The data for component B
is in a second data array in a second section 204B. The data
for component C is placed by the ECS module 114 in a third

US 10,599,560 B2

7

data array in a third section 204C. Within the memory chunk
200 associated with the archetype, all the component A data
(e.g., the component A data for all entities within the
archetype) is placed by the ECS module 114 contiguously
within the component A data array 204A, followed by all the
component B data (e.g., the component B data for all entities
within the archetype) placed by the ECS module 114 con-
tiguously within the component B data array 204B, fol-
lowed. by all the component C data (e.g., the component C
data for all entities within the archetype) placed by the ECS
module 114 contiguously within the component C data array
204C.

In accordance with an embodiment, and also shown in
FIG. 2A, a chunk 200 can also include Entity ID data (e.g.,
in an Entity ID data array 202). The entity ID data includes
information that describes the specific entities included in
the chunk 200. In some embodiments, the entity 1D 202
includes specific location information (e.g., array element
numbers) for each entity within each component data array.
For example, the entity ID 202 would include information
that links a specific location within a component data array
(e.g., element array number 12) to a specific entity (e.g.,
entity 123 which represents a specific game character
object). In accordance with an embodiment, all component
data arrays within the same chunk have the same order of
entity data so that, for example, element array number 12 in
all component data arrays (e.g., component A, component B
and component C) is linked. to entity 123.

In accordance with an embodiment, and shown in FIG.
2B, is a schematic diagram of a data layout for a first chunk
200A (e.g., labeled chunk ‘X’) and a second chunk 200B
(e.g., labeled chunk “Y”). The first chunk 200A is similar to
the chunk 200 in FIG. 2A. The second chunk 200B includes
data for a second archetype that includes 4 components: a
first component (component ‘A’) in a first data array in a first
section 208A, a second component (component ‘D’) in a
second data array in a second section 208B, a third compo-
nent (component ‘E’) in a third data array in a third section
208C, and a fourth component (component ‘F’) in a fourth
data array in a fourth section 208D. Note that the two
different archetypes (e.g., the first archetype in the first
chunk 200A and the second archetype in the second chunk
200B) can have one or more (but not all) similar component
types (e.g., component ‘A’ 204A and component ‘A’ 208A
may both be the same type of component, such as a
transform component). Despite the component type for
component ‘A’ 204A in chunk ‘X’ 200A being similar to the
component type for component ‘A’ 208A in chunk ‘Y’ 200B,
the data within the two sections are not the same since the
two sections each represent a different set of entities.

In accordance with an embodiment, and shown in FIG. 3,
is a schematic diagram of a memory layout for a component
data array in memory 102. FIG. 3 shows some internal data
structure for two component data arrays described in FIG.
2A and 2B within chunk ‘X’ 200A. The first component data
array 204A includes component ‘A’ data, and the second
component data array 204B includes component ‘B’ data. As
shown in FIG. 3, the first component data array 204A
contains data from only one type of game component (e.g.,
only component A, such as a transform component), and
wherein each element of the array 204A includes data
belonging to a different specific entity. In the example shown
in the figure, there are 5 entities within the archetype and the
first component data array 204 A contains all the data within
the archetype for component ‘A’ placed contiguously in
memory 102. More specifically, five sections that include
component ‘A’ data for Entity 1, Entity 2, Entity 3, Entity 4

10

15

20

25

30

35

40

45

50

55

60

65

8

and Entity 5 are in a first section 300, a second section 302,
a third section 304, a fourth section 306 and a fifth section
308 respectively, and whereby the five sections are next to
(e.g., contiguous) each other in memory 102. In the example
shown in FIG. 3, the second component data array 204B
contains all the data within the archetype for component ‘B’
placed contiguously in memory 102. More specifically, five
sections that include component ‘B’ data for Entity 1, Entity
2, Entity 3, Entity 4 and Entity 5 are in a first section 312,
a second section 314, a third section 316, a fourth section
318 and a fifth section 320 respectively, and whereby the
five sections are next to (e.g., contiguous with) each other in
memory 102. In accordance with an embodiment, and
shown in FIG. 3 as a header 310, a component data array
(e.g., component ‘B’ data array 204B) may contain one or
more sections that precede the component data and that
contain header data or metadata for the component data
array.

In accordance with an embodiment, the location within a
component data array (e.g., array index) of data for one
entity is consistent across all component data arrays within
a chunk. For example, as shown in FIG. 3, a first entity (e.g.,
Entity 1) can have component ‘A’ data in a first section 300
of the first component data array 204A at a first array index
number (e.g., array index 0); and similarly, the first entity
has component ‘B’ data in a first section 312 of the second
component data array 204B with the same array index
number (e.g., array index 0); and similarly (e.g., not shown
in FIG. 3), the first entity has component ‘C’ data in a first
section of the third component data array 204C with the
same array index number (e.g., array index 0). In this way,
the location of an entity within a component data array (e.g.,
array index number) is consistent across different compo-
nent data arrays within a chunk. For example, in the example
from FIG. 3, the component data array index of ‘0’ refers to
the first entity (e.g., Entity 1) for all the component data
arrays within the chunk (e.g., for the first component data
array 204A, the second component data array 204B, the
third component data array 204C, and so on). Similarly, the
component data array index of ‘1’ refers to the second entity
(e.g., Entity 2) for all the component data arrays within the
chunk 200A, and the component data array index of ‘2’
refers to the third entity (e.g., Entity 3) for all the component
data arrays within the chunk, and so on for all the entities
within the chunk 200A.

As described above, a component data array element is
linked with a specific component and a specific entity. For
example, in FIG. 3, the component data array element in the
first section 300 of the first component data array 204A at the
first array index number (index 0) refers to the data for
component ‘A’ of Entity 1. The section 300 with data for
component ‘A’ of Entity 1 can include another array that
includes specific data for the component. For example,
consider that component ‘A’ is a transform component that
requires at least 9 values (e.g., 3 values for size, 3 values for
position and 3 values for orientation), and therefore the first
section 300 (e.g., and all the other sections 302, 304, 306 and
308) of the first component data array 204 A for the chunk
200A stores an array of at least 9 elements.

By creating and structuring component data arrays as
shown in FIG. 2A, FIG. 2B and FIG. 3, the ECS module 114
can quickly iterate over elements within a single component
type (e.g., in order to change values therein) for all similar
entities in a game (e.g., because similar entities are in the
same archetype and also within the same chunk within
memory 102). The quick iteration over component data in a
chunk is due to the guarantee of a linear and compact (e.g.,

US 10,599,560 B2

9

contiguous) layout of data within memory 102 of the com-
ponent data as described herein with respect to FIG. 2A,
FIG. 2B and FIG. 3. The contiguous linear layout of entity
data as shown in FIG. 3 and the contiguous linear layout of
component data arrays as shown in FIG. 2A and 2B ensures
linear iteration over all the entities within a chunk, thus
allowing maximum use of hardware prefetching. Hardware
prefetching is a technique used in a CPU to bring data from
a slow access memory location (e.g., main memory 102) to
a fast access local cache memory within the CPU (e.g.,
cache memory 105 shown in FIG. 1) before the data is
needed by the CPU. The contiguous, compact linear layout
of entity and component data shown in FIG. 2A, FIG. 2B
and FIG. 3 maximizes, the effectiveness of hardware
prefetching techniques.

As an example of archetypes and archetype structure in
memory 102, consider a game scene (e.g., in a video game
environment) containing 5 ‘cube’ entities (e.g., 5 game
objects which are cubes). In the example, the 5 entities are
grouped into 2 archetypes and occupy 2 chunks in memory
102 (e.g., one chunk for each of the two archetypes).
Specifically, as part of the example, the 5 entities are divided
into Archetype I and Archetype 1. As part of the example,
Archetype I contains 3 cube entities with labels such as
‘Cube 1°, ‘Cube 2’ and ‘Cube 3°. All entities in Archetype
1 (e.g., the three cube entities ‘Cube 1°, ‘Cube 2’ and ‘Cube
3’) contain 6 components, including for example: a trans-
form component (e.g., describing the size, orientation and
position of the entity), a cube component (e.g., describing
the shape of the entity), a box collider component (e.g.,
defining the collision volume associated with the entity), a
mesh renderer (e.g., describing rendering information for a
mesh for the entity), a light component (e.g., describing light
generation properties of the entity), and an Audio Source
component (e.g., describing an audio source associated with
the entity). Accordingly the chunk for Archetype I has 6
component data arrays including one array for each of the 6
components. Furthermore, continuing with the example,
Archetype II contains 2 cube entities (e.g., labeled as ‘Cube
4> and ‘Cube 5°) wherein the two cube entities (all the
entities within the archetype) contain 4 components, includ-
ing: a transform component, a cube component, a box
collider component, and a mesh renderer component. Even
though there are 5 cubes in the example, the 5 cubes are not
similar enough to be in a single archetype since 3 of the
cubes (‘cube 1°, ‘cube 2’, and ‘cube 3”) contain one set of
components while 2 of the cubes (‘cube 4°, and ‘cube 57)
contain a different set components. Instead, the 5 cubes are
grouped into two different archetypes (e.g., Archetype I and
Archetype 1) which each have a unique set of component
data arrays.

The method of packing the memory 102 within chunks as
shown in FIG. 2A, FIG. 2B and FIG. 3 allows the ECS
module 114 to access data for individual components very
efficiently. Accessing data for a first component is indepen-
dent of accessing data for a second component. For example,
accessing one type of game component data (e.g., transform
data) for one or more entities within an archetype does not
involve loading (e.g., from memory 102 into the cache 105)
all the other game component data for the same one or more
entities. As a specific example, consider Archetype 1 as
described above. For archetype 1, changing transform com-
ponent data for the entities within the archetype does not
involve loading (e.g., from memory 102 to the cache 105)
any of the other component data; namely, cube component

40

45

55

10

data, box collider component data, mesh renderer compo-
nent data, light component data, and Audio Source compo-
nent data.

In accordance with an embodiment and shown in FIG. 4A
is a flowchart of a computer-implemented method 400 for
integrating an entity (e.g., a new entity or a modified entity)
into an ECS system that includes existing chunks (and
associated archetypes). The computer-implemented method
400 (hereafter referred to as “the method 400”) is performed
by a computing device (e.g., such as the ECS device 101)
including at least one hardware processor and a memory
102. During operation (e.g., during game play), an event in
a game may require the creation of a new entity (or modi-
fication of an existing entity) which might require the
method 400 for integrating an entity. The method starts at
process 404 when the ECS module 114 receives an entity
which is to be integrated into a chunk (the details of the
receiving described herein with respect to FIG. 4B and FIG.
4C). At process 406, the ECS module 114 compares the
components within the received entity with components in
existing archetype chunks (e.g., existing in memory 102) to
attempt to classify the received entity into one of the existing
archetypes. At process 408 a decision is made, based on the
comparison of process 406, as to whether the received entity
is compatible with and classified into an existing archetype
(e.g., has the same number and type of components as the
entities within the existing archetype) or if the received
entity is not classified into an existing archetype. If the
received entity is classified into an existing archetype, then
at process 416, based on the received entity being classified
into the existing archetype, for each component in the
received entity, the ECS module 114 adds the data from the
component to an associated component data array of the
same type (e.g., add component ‘A’ data from the received
entity to the end of the component ‘A’ data array) in the
classified existing chunk (e.g., the chunk related to the
classified existing archetype). At process 410, based on the
received entity not being classified into an existing arche-
type, the ECS module 114 creates a new chunk (for a new
archetype) in memory 102 using the components from the
received entity. At process 412, the ECS module 114 creates
within the new chunk one new component data array for
each component type within the received entity. The ECS
module 114 populates the created arrays with the associated
component data from the received entity.

In accordance with an embodiment and shown in FIG. 4B
is a flowchart for a computer-implemented method 420 for
creating a new entity. The computer-implemented method
420 (hereafter referred to as “the method 420”) is performed
by a computing device (e.g., such as the ECS device 101)
including at least one hardware processor and a memory
102. During operation (e.g., during game play), at process
422, an event in a game requires the creation of a new entity
(e.g., a spawning of a creature/character, firing of a weapon,
movement of a character, and the like). At process 424,
based on the gameplay event requiring the creation of a new
entity, the ECS module 114 creates a new entity with at least
one component. The created entity would typically include
a plurality of components based on a set of rules (e.g., rules
created by a game developer) for the creation of the entity
based on the event. For example, the creation of a new entity
for a game character would include components that
included data for the character size, position, orientation,
shape, texture, physics, and the like. The values within the
components would be determined by the rules (e.g., includ-
ing default values and values determined by the event in
process 422 that initiated the creation of the entity). The ECS

US 10,599,560 B2

11

module 114 then uses the method 400 to integrate the new
entity into an entity archetype.

In accordance with an embodiment and shown in FIG. 4C
is a flowchart for a method 450 for modifying an existing
entity. The computer-implemented method 450 (hereafter
referred to as “the method 450”) is performed by a com-
puting device (e.g., such as the ECS device 101) including
at least one hardware processor and a memory 102. During
operation (e.g., during game play), an event 422 in a game
may require modification of an existing entity (e.g., if the
component data or behaviors therein are modified via addi-
tion, deletion or modification such as when an object is
moved and the transform component is modified). At pro-
cess 452 and 454, the ECS module 114 determines if the
archetype for the modified entity has changed due to the
addition or deletion of a component type. At process 456,
based on the archetype not changing, the ECS module 114
updates data in the existing component arrays related to the
modified entity using new data from the gameplay event. To
update the data, the ECS module 114 loads data from the
memory 102 to the cache 105, modifies it, and then writes
it back to the memory 102. At process 460, based on the
archetype of the modified entity changing, the ECS module
114 deletes data related to the modified entity from the
original archetype (e.g., the archetype for the entity before
the modification) component data arrays. At process 462, the
ECS module 114 moves the remaining entity data in the old
archetype to fill any empty space in the component data
arrays created by the deletion (e.g., as described with respect
to FIGS. 6A, 6B and 6C). At process 400, based on the
archetype of the modified entity changing, the ECS module
114 integrates the modified entity into an entity archetype.

In accordance with an embodiment, the behavior of an
entity is determined by programming code (or system code)
which accesses and modifies data within one or more
components. The behavior of an entity in the ECS system is
achieved by acting on component data using functions. The
functions include iterating (e.g., using loops) over the ele-
ments of one or more component data arrays.

In accordance with an embodiment and shown in a
flowchart in FIG. 5, is a computer-implemented method 500
wherein the ECS module 114 discovers a plurality of entities
and iterates over components of the plurality of entities in
order to modify or read the data within the components. The
computer-implemented method 500 (hereafter referred to as
“the method 500”) is performed by a computing device (e.g.,
such as the ECS device 101) including at least one hardware
processor and a memory 102. The method 500 begins when
the ECS module 114 receives (e.g., from the user of a game
via the game engine 112) instructions to modify or read the
properties of a plurality of entities (e.g., by changing the data
within the components for the entities). In accordance with
an embodiment, at process 502, the ECS module 114
receives (e.g., from the game engine or from a user) a first
list of components, a second list of components, and instruc-
tions. The first list of components including names (or
labels) of one or more components (e.g., a transform com-
ponent, a collider component, and the like) to modify
according to the instructions. The instructions include
details for changing the data within the one or more com-
ponents on the first list of components (e.g., including using
math formulas to change mathematical values, and selecting
values from a list). The second list of components providing
criteria for finding the plurality of entities to be modified.
The second list including names (or labels) of one or more
components which must be included in the plurality of
entities to be found and modified. At process 504, the ECS

20

30

35

40

45

12

module 114 searches through all the archetypes in the game
world environment (or simulation environment) to find a set
of archetypes that have components that include all the one
or more components in the second list of components. The
search might include searching through the Entity ID data
202, 206 for a chunk. The archetypes in the set must each
have at least all the components on the second list. At
process 506, for each found archetype, the ECS module 114
finds the one or more chunks associated with the found
archetype, and for each found chunk, iterates through and
modifies the one or more components from the first list of
components therein according to the instructions. A compo-
nent is modified by the ECS module 114 by iterating through
the elements of the component wherein each element to be
modified is read from the memory 102 to the cache 105
where it is modified and then written back to the memory
102. In some embodiments, the modification of the compo-
nents in each archetype in the process 506 are done in
parallel whereby the modifications to a first archetype are
independent of the modifications to a second archetype (e.g.,
the modifications to the first archetype are performed on a
first CPU core and the modifications to the second archetype
are performed on a second CPU core). In some embodi-
ments, as part of process 506, the ECS module 114 creates
a linked list of all the data for each component on the first
list of components (e.g., one linked list for each component),
wherein the linked list includes an array of data for each
chunk. The data within the linked list is not moved within
memory, rather the linked list provides a path through
memory from one chunk to another in order to hide the fact
that the data is split between a plurality of chunks.

As an example of the method shown in the flow chart in
FIG. 5, consider a situation wherein the game engine directs
the ECS module 114 to find all entities containing a first
component (e.g., component A) and a second component
(e.g., component B) in order to modify the first component.
In the example, the first component list contains component
A while the second component list contains component A
and component B. Perhaps component A is a transform
component, and component B is a collider component. In the
example, consider a game environment (or simulation envi-
ronment) that contains a plurality of entities within 4 arche-
types. The first archetype (e.g., Archetype 1) contains all
entities that only have a single component: component A.
The second archetype (e.g., Archetype 2) contains all entities
that contain two specific components: component A and
component B. The third archetype (e.g., Archetype 3) con-
tains all entities that contain three specific components:
component A, component B, and component C. The fourth
archetype (e.g., Archetype 4) contains all entities that con-
tain three specific components: component D, component E
and component F.

Archetype 1: [A],

Archetype 2: [A, B]

Archetype 3: [A, B, C]

Archetype 4: [D, E, F]

Continuing with the example, the game environment
contains a plurality of entities within each of the four
archetypes. For example, consider a situation where there
are 5 entities in Archetype 1, 300 entities in Archetype 2,
2,000 entities in Archetype 3 and 10,000 entities within
Archetype 4. As part of the example, consider that the 5
entities of Archetype 1 are in a first chunk, the 300 entities
in Archetype 2 are in a second chunk, the 2,000 entities of
Archetype 3 are split between a third chunk and a fourth
chunk, and the 10,000 entities in Archetype 4 are split
between another 5 chunks. In the example, the ECS module

US 10,599,560 B2

13

114 is directed by the game engine to iterate over component
A (e.g., the transform component). In the example, the ECS
module 114 would do the following:

1) The ECS module 114 searches over all archetypes to
find the specific archetypes that include both component A
and component B (e.g., all the components from the second
list of components). In the example, there are 2 archetypes
that include both component A and component B: Archetype
2 and Archetype 3 (e.g., Archetype 1 is not compatible since
it is missing component B, and Archetype 4 is not compat-
ible since it is missing both component A and component B).

2) For each found archetype (e.g., Archetype 2 and
Archetype 3), the ECS module 114 finds the one or more
chunks associated with the archetype. In the example, the
ECS module 114 would have 3 chunks over which to iterate:
the second chunk associated with Archetype 11 and the third
chunk and the fourth chunk associated with Archetype III.

3) Within each found chunk the ECS module 114 sequen-
tially modifies the data within component A for all entities
from one end of the chunk to the other based on the
instructions received (e.g., each entity can be modified
differently). A component is modified by the ECS module
114 by iterating through the elements of the component,
wherein each element to be modified is read from the
memory 102 to the cache 105 where it is modified and then
written back to the memory 102. In the example, the ECS
module 114 might first iterate over the chunk associated with
Archetype 2 and modify component A for the 300 entities
the therein according to the specifics of the modification
instructions. Simultaneously or sequentially, the ECS mod-
ule 114 modifies the third chunk and fourth chunk associated
with Archetype 3 by sequentially modifying component A
for the 2,000 entities in Archetype 3 from one end of a chunk
to the other. The modification is very fast since the data
within the entities is linearly and compactly (e.g., contigu-
ously) packed within each chunk (e.g., similar to what is
shown in FIG. 3) which allows hardware prefetching use to
be maximized.

The contiguous packing of memory by the ECS is useful
when dealing with a large group of similar entities (e.g., an
archetype), since the game/user will often want to access the
same type of data (e.g., the same component) in bulk across
all the entities in the archetype. For example, assume in the
example above that the 2,000 entities in Archetype 3 rep-
resent non-player characters (NPCs) and the game/user
wants to change the position data of all of them (e.g., due to
a nearby explosion). The ECS module 114 can quickly
change the position data (e.g., which is part of the transform
component) for all 2,000 NPC entities because the data is in
one long contiguous block of memory (e.g., as shown and
described for FIG. 3).

Deletion of an Entity

In accordance with an embodiment, the ECS module 114
works to keep all live entities within an archetype chunk
packed tightly in memory (e.g., by removing gaps caused by
a deleted entity) in order to maintain high efficiency when
accessing memory 102. The ECS module 114 removes from
a chunk, with high priority, entity data from an entity that
has been deleted (e.g., if an entity such as a character or
other object is blown up during a game and no longer exists).
When an entity is deleted during game play (e.g., due to a
gameplay event), the memory space within each component
data array which was assigned to the deleted entity can be
filled with component data from another similar live entity
(e.g., another entity from the same archetype which is not
deleted). An example of the deletion of an entity within the
ECS is shown in FIGS. 6A and 6B. FIG. 6A shows two

5

10

15

20

25

30

35

40

45

50

55

60

65

14

component data arrays similar to those described in FIG. 3,
before the deletion of an entity, and FIG. 6B shows the same
two component data arrays after deletion of the entity. In
accordance with an embodiment and shown in the example,
when entity data is deleted from within a component data
array (e.g., the middle of the array), the ECS module 114
moves data associated with the last entity in the component
data array (e.g., the entity at the end of the array) to the
empty memory space created by the deleted entity data. The
same movement of data is performed on all component data
arrays in the archetype since the deleted entity has data in
each of the arrays in the archetype (e.g., at the same index
number for each of the component data arrays). For
example, as shown in FIG. 6A, a gameplay event has caused
Entity 2 to be deleted (e.g., removed) from the game. FIG.
6A shows that all data for Entity 2, including data in the
component A data array 204A (at the section 302 for Index
1) and data in the component B data array 204B (at the
section 314 for Index 1) is being deleted as shown in the
figure by an ‘X’ over the respective sections. Other data for
Entity 2 in other component data arrays (e.g., component C
data array 204C) not shown in FIG. 6A and FIG. 6B would
also be deleted. FIG. 6B shows the empty section 302 in
memory 102 for the component A data array 204A and the
empty section 314 in memory 102 for the component B data
array 204B. In accordance with the example, the ECS
module 114 would move data for the last entity in all the
component data arrays for the chunk (e.g., the last position
shown in the figure with Index 4) in order to fill the empty
sections in memory caused by the deletion. Accordingly, the
ECS module 114 would move data for Entity 5 from the last
section 308 in the component A data array 204A (e.g., at
Index 4) to the section 302 for Index 1 to replace the deleted
entity data. Similarly, the ECS module 114 would move data
for Entity 5 from the last section 320 in the component B
data array 204B (e.g., at Index 4) to the section 314 for Index
1 to replace the deleted entity data. The movement of data
is shown symbolically in FIG. 6B with an two arrows from
section 308 to section 302 and from section 320 to section
314. FIG. 6C shows both the component A data array 204A
and the component B data array 204B after the data for
Entity 5 is moved and wherein the data for Entity 5 has filed
the gaps in memory caused by the deletion and the compo-
nent data arrays (204A and 204B) have regained the com-
pact, contiguous and linear memory density layout. In
accordance with some embodiments, empty memory spaces
at the end of a component data array (e.g., such as the section
308 for Index 4 at the end of the component A data array
204A and the section 320 for Index 4 at the end of the
component B data array 204B) may be left empty by the
ECS module 114 in order to save space for new entities
which may be added to the archetype. The entity ID data can
be modified to reflect the removal of the deleted entity data
and the change in position of the moved entity data due to
the deletion (e.g., including changing the number of entities
in the chunk to be one less than before the deletion).
Accordingly, there are no permanent memory holes within a
component data array since the ECS module 114 actively
keeps the memory within a component data array (and a
chunk) packed tightly with live entities.

In accordance with an embodiment, and shown in a
flowchart in FIG. 7A and FIG. 7B is a computer-imple-
mented method 600 by which the ECS module 114 converts
an object-oriented programming (OOP) game object (e.g.,
with a class structure) into an entity. The computer-imple-
mented method 600 (hereafter referred to as “the method
600”) is performed by a computing device (e.g., such as the

US 10,599,560 B2

15

ECS device 101) including at least one hardware processor
and a memory 102. In accordance with the embodiment, in
process 602, the ECS module 114 receives an OOP game
object (e.g., from an external module) which is to be
converted to an entity. At process 604, the ECS module 114
analyzes the data therein. During the analysis, the ECS
module extracts a list of OOP components from the OOP
game object, and OOP data that defines each of the com-
ponents on the list. The OOP data represents variables in
OOP programming. At process 606, the ECS module 114
extracts the OOP data (e.g., variables) for component on the
list. For example, an OOP game object might have 4
components with each of the 4 components having distinct
variables such that the ECS module 114 extracts the vari-
ables for each of the 4 components. At process 608, the ECS
module 114 uses the extracted list of components to classify
the OOP object into an existing entity archetype (e.g., one
that was created in memory 102 previously) by comparing
the components in the list with the components in existing
archetypes in the ECS environment. If the list of components
from the OOP object is an exact match to a list of compo-
nents for one of the existing archetypes, then the OOP object
is compatible with the matched existing archetype. Based on
the OOP object component list matching an existing arche-
type component list, at process 612, for each component in
the OOP game object, the ECS module 114 adds the data
from the OOP component to the associated ECS component
data array within a chunk associated with the matched
existing archetype. In accordance with an embodiment, the
data is added to the end of component data array (e.g.,
because the component data array is always fully packed
with data). The entity ID data for the component data array
is also updated to include the added component data. Based
on the OOP object component list not matching an existing
archetype component list, at process 616, the ECS module
114 creates a new archetype chunk for the entity. At process
618, for each component type in the OOP game object, the
ECS module 114 creates a component data array and adds
the data from the OOP component to the component data
array within the newly created chunk.

While illustrated in the block diagrams as groups of
discrete components communicating with each other via
distinct data signal connections, it will be understood by
those skilled in the art that the preferred embodiments are
provided by a combination of hardware and software com-
ponents, with some components being implemented by a
given function or operation of a hardware or software
system, and many of the data paths illustrated being imple-
mented by data communication within a computer applica-
tion or operating system. The structure illustrated is thus
provided for efficiency of teaching the present preferred
embodiment.

It should be noted that the present disclosure can be
carried out as a method, can be embodied in a system, a
computer readable medium or an electrical or electro-mag-
netic signal. The embodiments described above and illus-
trated in the accompanying drawings are intended to be
exemplary only. It will be evident to those skilled in the art
that modifications may be made without departing from this
disclosure. Such modifications are considered as possible
variants and lie within the scope of the disclosure.

Certain embodiments are described herein as including
logic or a number of components, modules, or mechanisms.
Modules may constitute either software modules (e.g., code
embodied on a machine-readable medium or in a transmis-
sion signal) or hardware modules. A “hardware module” is
a tangible unit capable of performing certain operations and

10

15

20

25

30

35

40

45

50

55

60

65

16

may be configured or arranged in a certain physical manner.
In various example embodiments, one or more computer
systems (e.g., a standalone computer system, a client com-
puter system, or a server computer system) or one or more
hardware modules of a computer system (e.g., a processor or
a group of processors) may be configured by software (e.g.,
an application or application portion) as a hardware module
that operates to perform certain operations as described
herein.

In some embodiments, a hardware module may be imple-
mented mechanically, electronically, or with any suitable
combination thereof. For example, a hardware module may
include dedicated circuitry or logic that is permanently
configured to perform certain operations. For example, a
hardware module may be a special-purpose processor, such
as a field-programmable gate array (FPGA) or an Applica-
tion Specific Integrated Circuit (ASIC). A hardware module
may also include programmable logic or circuitry that is
temporarily configured by software to perform certain
operations. For example, a hardware module may include
software encompassed within a general-purpose processor
or other programmable processor. It will be appreciated that
the decision to implement a hardware module mechanically,
in dedicated and permanently configured circuitry, or in
temporarily configured circuitry (e.g., configured by soft-
ware) may be driven by cost and time considerations.

Accordingly, the phrase “hardware module” should be
understood to encompass a tangible entity, be that an entity
that is physically constructed, permanently configured (e.g.,
hardwired), or temporarily configured (e.g., programmed) to
operate in a certain manner or to perform certain operations
described herein. As used herein, “hardware-implemented
module” refers to a hardware module. Considering embodi-
ments in which hardware modules are temporarily config-
ured (e.g., programmed), each of the hardware modules need
not be configured or instantiated at any one instance in time.
For example, where a hardware module comprises a general-
purpose processor configured by software to become a
special-purpose processor, the general-purpose processor
may be configured as respectively different special-purpose
processors (e.g., comprising different hardware modules) at
different times. Software may accordingly configure a par-
ticular processor or processors, for example, to constitute a
particular hardware module at one instance of time and to
constitute a different hardware module at a different instance
of time.

Hardware modules can provide information to, and
receive information from, other hardware modules. Accord-
ingly, the described hardware modules may be regarded as
being communicatively coupled. Where multiple hardware
modules exist contemporaneously, communications may be
achieved through signal transmission (e.g., over appropriate
circuits and buses) between or among two or more of the
hardware modules. In embodiments in which multiple hard-
ware modules are configured or instantiated at different
times, communications between such hardware modules
may be achieved, for example, through the storage and
retrieval of information in memory structures to which the
multiple hardware modules have access. For example, one
hardware module may perform an operation and store the
output of that operation in a memory device to which it is
communicatively coupled. A further hardware module may
then, at a later time, access the memory device to retrieve
and process the stored output. Hardware modules may also
initiate communications with input or output devices, and
can operate on a resource (e.g., a collection of information).

US 10,599,560 B2

17

The various operations of example methods described
herein may be performed, at least partially, by one or more
processors that are temporarily configured (e.g., by soft-
ware) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors may constitute processor-implemented
modules that operate to perform one or more operations or
functions described herein. As used herein, “processor-
implemented module” refers to a hardware module imple-
mented using one or more processors.

Similarly, the methods described herein may be at least
partially processor-implemented, with a particular processor
or processors being an example of hardware. For example,
at least some of the operations of a method may be per-
formed by one or more processors or processor-imple-
mented modules. Moreover, the one or more processors may
also operate to support performance of the relevant opera-
tions in a “cloud computing” environment or as a “software
as a service” (SaaS). For example, at least some of the
operations may be performed by a group of computers (as
examples of machines including processors), with these
operations being accessible via a network (e.g., the Internet)
and via one or more appropriate interfaces (e.g., an appli-
cation program interface (API)).

The performance of certain of the operations may be
distributed among the processors, not only residing within a
single machine, but deployed across a number of machines.
In some example embodiments, the processors or processor-
implemented modules may be located in a single geographic
location (e.g., within a home environment, an office envi-
ronment, or a server farm). In other example embodiments,
the processors or processor-implemented modules may be
distributed across a number of geographic locations.

FIG. 8 is a block diagram 700 illustrating an example
software architecture 702, which may be used in conjunction
with various hardware architectures herein described to
provide a gaming engine 701 and/or components of the
entity component system 100. FIG. 8 is a non-limiting
example of a software architecture and it will be appreciated
that many other architectures may be implemented to facili-
tate the functionality described herein. The software archi-
tecture 702 may execute on hardware such as a machine 800
of FIG. 9 that includes, among other things, processors 810,
memory 830, and input/output (I/O) components 850. A
representative hardware layer 704 is illustrated and can
represent, for example, the machine 800 of FIG. 9. The
representative hardware layer 704 includes a processing unit
706 having associated executable instructions 708. The
executable instructions 708 represent the executable instruc-
tions of the software architecture 702, including implemen-
tation of the methods, modules and so forth described
herein. The hardware layer 704 also includes memory/
storage 710, which also includes the executable instructions
708. The hardware layer 704 may also comprise other
hardware 712.

In the example architecture of FIG. 8, the software
architecture 702 may be conceptualized as a stack of layers
where each layer provides particular functionality. For
example, the software architecture 702 may include layers
such as an operating system 714, libraries 716, frameworks
or middleware 718, applications 720 and a presentation
layer 744. Operationally, the applications 720 and/or other
components within the layers may invoke application pro-
gramming interface (API) calls 724 through the software
stack and receive a response as messages 726. The layers
illustrated are representative in nature and not all software
architectures have all layers. For example, some mobile or

10

15

20

25

30

35

40

45

50

55

60

65

18

special purpose operating systems may not provide the
frameworks/middleware 718, while others may provide such
a layer. Other software architectures may include additional
or different layers.

The operating system 714 may manage hardware
resources and provide common services. The operating
system 714 may include, for example, a kernel 728, services
730, and drivers 732. The kernel 728 may act as an abstrac-
tion layer between the hardware and the other software
layers. For example, the kernel 728 may be responsible for
memory management, processor management (e.g., sched-
uling), component management, networking, security set-
tings, and so on. The services 730 may provide other
common services for the other software layers. The drivers
732 may be responsible for controlling or interfacing with
the underlying hardware. For instance, the drivers 732 may
include display drivers, camera drivers, Bluetooth® drivers,
flash memory drivers, serial communication drivers (e.g.,
Universal Serial Bus (USB) drivers), Wi-Fi® drivers, audio
drivers, power management drivers, and so forth depending
on the hardware configuration.

The libraries 716 may provide a common infrastructure
that may be used by the applications 720 and/or other
components and/or layers. The libraries 716 typically pro-
vide functionality that allows other software modules to
perform tasks in an easier fashion than to interface directly
with the underlying operating system 714 functionality (e.g.,
kernel 728, services 730 and/or drivers 732). The libraries
816 may include system libraries 734 (e.g., C standard
library) that may provide functions such as memory alloca-
tion functions, string manipulation functions, mathematic
functions, and the like. In addition, the libraries 716 may
include API libraries 736 such as media libraries (e.g.,
libraries to support presentation and manipulation of various
media format such as MPEG4, H.264, MP3, AAC, AMR,
JPG, PNG), graphics libraries (e.g., an OpenGL framework
that may be used to render 2D and 3D graphic content on a
display), database Libraries (e.g., SQLite that may provide
various relational database functions), web libraries (e.g.,
WebKit that may provide web browsing functionality), and
the like. The libraries 716 may also include a wide variety
of other libraries 738 to provide many other APIs to the
applications 720 and other software components/modules.

The frameworks 718 (also sometimes referred to as
middleware) provide a higher-level common infrastructure
that may be used by the applications 720 and/or other
software components/modules. For example, the frame-
works/middleware 718 may provide various graphic user
interface (GUI) functions, high-level resource management,
high-level location services, and so forth. The frameworks/
middleware 718 may provide a broad spectrum of other
APIs that may be utilized by the applications 720 and/or
other software components/modules, some of which may be
specific to a particular operating system or platform.

The applications 720 include built-in applications 740
and/or third-party applications 742. Examples of represen-
tative built-in applications 740 may include, but are not
limited to, a contacts application, a browser application, a
book reader application, a location application, a media
application, a messaging application, and/or a game appli-
cation. Third-party applications 742 may include any an
application developed using the Android™ or iOS™ soft-
ware development kit (SDK) by an entity other than the
vendor of the particular platform, and may be mobile
software running on a mobile operating system such as
10S™, Android™, Windows® Phone, or other mobile oper-
ating systems. The third-party applications 742 may invoke

US 10,599,560 B2

19

the API calls 724 provided by the mobile operating system
such as operating system 714 to facilitate functionality
described herein.

The applications 720 may use built-in operating system
functions (e.g., kernel 728, services 730 and/or drivers 732),
libraries 716, or frameworks/middleware 718 to create user
interfaces to interact with users of the system. Alternatively,
or additionally, in some systems, interactions with a user
may occur through a presentation layer, such as the presen-
tation layer 744. In these systems, the application/module
“logic” can be separated from the aspects of the application/
module that interact with a user.

Some software architectures use virtual machines. In the
example of FIG. 8, this is illustrated by a virtual machine
748. The virtual machine 748 creates a software environ-
ment where applications/modules can execute as if they
were executing on a hardware machine (such as the machine
800 of FIG. 9, for example). The virtual machine 748 is
hosted by a host operating system (e.g., operating system
714) and typically, although not always, has a virtual
machine monitor 746, which manages the operation of the
virtual machine 748 as well as the interface with the host
operating system (i.e., operating system 714). A software
architecture executes within the virtual machine 748 such as
an operating system (OS) 750, libraries 752, frameworks
754, applications 756, and/or a presentation layer 758. These
layers of software architecture executing within the virtual
machine 748 can be the same as corresponding layers
previously described or may be different.

FIG. 9 is a block diagram illustrating components of a
machine 800, according to some example embodiments,
configured to read instructions from a machine-readable
medium (e.g., a machine-readable storage medium) and
perform any one or more of the methodologies discussed
herein. In some embodiments, the machine 800 is similar to
the ECS device 101. Specifically, FIG. 9 shows a diagram-
matic representation of the machine 800 in the example form
of a computer system, within which instructions 816 (e.g.,
software, a program, an application, an applet, an app, or
other executable code) for causing the machine 800 to
perform any one or more of the methodologies discussed
herein may be executed. As such, the instructions 816 may
be used to implement modules or components described
herein. The instructions transform the general, non-pro-
grammed machine into a particular machine programmed to
carry out the described and illustrated functions in the
manner described. In alternative embodiments, the machine
800 operates as standalone device or may be coupled (e.g.,
networked) to other machines. In a networked deployment,
the machine 800 may operate in the capacity of a server
machine or a client machine in a server-client network
environment, or as a peer machine in a peer-to-peer (or
distributed) network environment. The machine 800 may
comprise, but not be limited to, a server computer, a client
computer, a personal computer (PC), a tablet computer, a
laptop computer, a netbook, a set-top box (STB), a personal
digital assistant (PDA), an entertainment media system, a
cellular telephone, a smart phone, a mobile device, a wear-
able device (e.g., a smart watch), a smart home device (e.g.,
a smart appliance), other smart devices, a web a network
router, a network switch, a network bridge, or any machine
capable of executing the instructions 816, sequentially or
otherwise, that specify actions to be taken by the machine
800. Further, while only a single machine 800 is illustrated,
the term ‘machine’ shall also be taken to include a collection

10

15

20

25

30

35

40

45

50

55

60

65

20

of machines that individually or jointly execute the instruc-
tions 816 to perform any one or more of the methodologies
discussed herein.

The machine 800 may include processors 810, memory
830, and input/output (1/O) components 850, which may be
configured to communicate with each other such as via a bus
802. In an example embodiment, the processors 810 (e.g., a
Central Processing Unit (CPU), a Reduced Instruction Set
Computing (RISC) processor, a Complex Instruction Set
Computing (CISC) processor, a Graphics Processing Unit
(GPU), a Digital Signal Processor (DSP), an Application
Specific Integrated Circuit (ASIC), a Radio-Frequency Inte-
grated Circuit (RFIC), another processor, or any suitable
combination thereof) may include, for example, a processor
812 and a processor 814 that may execute the instructions
816. The term “processor” is intended to include multi-core
processor that may comprise two or more independent
processors (sometimes referred to as “cores”) that may
execute instructions contemporaneously. Although FIG. 9
shows multiple processors, the machine 800 may include a
single processor with a single core, a single processor with
multiple cores (e.g., a multi-core processor), multiple pro-
cessors with a single core, multiple processors with mul-
tiples cores, or any combination thereof.

The memory/storage 830 may include a memory, such as
a main memory 832, a static memory 834, or other memory,
and a storage unit 836, both accessible to the processors 810
such as via the bus 802. The storage unit 836 and memory
832, 834 store the instructions 816 embodying any one or
more of the methodologies or functions described herein.
The instructions 816 may also reside, completely or par-
tially, within the memory 832, 834, within the storage unit
836, within at least one of the processors 810 (e.g., within
the processor’s cache memory), or any suitable combination
thereof, during execution thereof by the machine 800.
Accordingly, the memory 832, 834, the storage unit 836, and
the memory of processors 810 are examples of machine-
readable media 838.

As used herein, “machine-readable medium” means a
device able to store instructions and data temporarily or
permanently and may include, but is not limited to, random-
access memory (RAM), read-only memory (ROM), buffer
memory, flash memory, optical media, magnetic media,
cache memory, other types of storage (e.g., Erasable Pro-
grammable Read-Only Memory (EEPROM) and/or any
suitable combination thereof. The term “machine-readable
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database, or
associated caches and servers) able to store the instructions
816. The term “machine-readable medium” shall also be
taken to include any medium, or combination of multiple
media, that is capable of storing instructions (e.g., instruc-
tions 816) for execution by a machine (e.g., machine 800),
such that the instructions, when executed by one or more
processors of the machine 800 (e.g., processors 810), cause
the machine 800 to perform any one or more of the meth-
odologies described herein. Accordingly, a “machine-read-
able medium” refers to a single storage apparatus or device,
as well as “cloud-based” storage systems or storage net-
works that include multiple storage apparatus or devices.
The term “machine-readable medium” excludes signals per
se.

The input/output (I/0) components 850 may include a
wide variety of components to receive input, provide output,
produce output, transmit information, exchange informa-
tion, capture measurements, and so on. The specific input/
output (I/O) components 850 that are included in a particular

US 10,599,560 B2

21

machine will depend on the type of machine. For example,
portable machines such as mobile phones will likely include
a touch input device or other such input mechanisms, while
a headless server machine will likely not include such a
touch input device. It will be appreciated that the input/
output (I/O) components 850 may include many other
components that are not shown in FIG. 9. The input/output
(I/O) components 850 are grouped according to functional-
ity merely for simplifying the following discussion and the
grouping is in no way limiting. In various example embodi-
ments, the input/output (I/O) components 850 may include
output components 852 and input components 854. The
output components 852 may include visual components
(e.g., a display such as a plasma display panel (PDP), a light
emitting diode (LED) display, a liquid crystal display
(LCD), a projector, or a cathode ray tube (CRT)), acoustic
components (e.g., speakers), haptic components (e.g., a
vibratory motor, resistance mechanisms), other signal gen-
erators, and so forth. The input components 854 may include
alphanumeric input components (e.g., a keyboard, a touch
screen configured to receive alphanumeric input, a photo-
optical keyboard, or other alphanumeric input components),
point based input components (e.g., a mouse, a touchpad, a
trackball, a joystick, a motion sensor, or another pointing
instrument), tactile input components (e.g., a physical but-
ton, a touch screen that provides location and/or force of
touches or touch gestures, or other tactile input compo-
nents), audio input components (e.g., a microphone), and the
like.

In further example embodiments, the input/output (1/O)
components 850 may include biometric components 856,
motion components 858, environmental components 860, or
position components 862, among a wide array of other
components. For example, the biometric components 856
may include components to detect expressions (e.g., hand
expressions, facial expressions, vocal expressions, body
gestures, or eye tracking), measure biosignals (e.g., blood
pressure, heart rate, body temperature, perspiration, or brain
waves), identify a person (e.g., voice identification, retinal
identification, facial identification, fingerprint identification,
or electroencephalogram based identification), and the like.
The motion components 858 may include acceleration sen-
sor components (e.g., accelerometer), gravitation sensor
components, rotation sensor components (e.g., gyroscope),
and so forth. The environmental components 860 may
include, for example, illumination sensor components e.g.,
photometer), temperature sensor components (e.g., one or
more thermometers that detect ambient temperature),
humidity sensor components, pressure sensor components
(e.g., barometer), acoustic sensor components (e.g., one or
more microphones that detect background noise), proximity
sensor components (e.g., infrared sensors that detect nearby
objects), gas sensors (e.g., gas detection sensors to detection
concentrations of hazardous gases for safety or to measure
pollutants in the atmosphere), or other components that may
provide indications, measurements, or signals corresponding
to a surrounding physical environment. The position com-
ponents 862 may include location sensor components (e.g.,
a Global Position System (GPS) receiver component), alti-
tude sensor components (e.g., altimeters or barometers that
detect air pressure from which altitude may be derived),
orientation sensor components (e.g., magnetometers), and
the like.

Communication may be implemented using a wide vari-
ety of technologies. The input/output (I/O) components 850
may include communication components 864 operable to
couple the machine 800 to a network 880 or devices 870 via

20

35

40

45

22

a coupling 882 and a coupling 872 respectively. For
example, the communication components 864 may include
a network interface component or other suitable device to
interface with the network 880. In further examples, the
communication components 864 may include wired com-
munication components, wireless communication compo-
nents, cellular communication components, Near Field
Communication (NFC) components, Bluetooth® compo-
nents (e.g., Bluetooth® Low Energy), Wi-Fi® components,
and other communication components to provide commu-
nication via other modalities. The devices 870 may be
another machine or any of a wide variety of peripheral
devices (e.g., a peripheral device coupled via a Universal
Serial Bus (USB)).

Moreover, the communication components 864 may
detect identifiers or include components operable to detect
identifiers. For example, the communication components
864 may include Radio Frequency Identification (RFID) tag
reader components, NFC smart tag detection components,
optical reader components (e.g., an optical sensor to detect
one-dimensional bar codes such as Universal Product Code
(UPC) bar code, multi-dimensional bar codes such as Quick
Response (QR) code, Aztec code, Data Matrix, Dataglyph,
MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code,
and other optical codes), or acoustic detection components
(e.g., microphones to identify tagged audio signals). In
addition, a variety of information may be derived via the
communication components 862, such as, location via Inter-
net Protocol (IP) geo-location, location via Wi-Fi® signal
triangulation, location via detecting a NFC beacon signal
that may indicate a particular location, and so forth.

Throughout this specification, plural instances may imple-
ment components, operations, or structures described as a
single instance. Although individual operations of one or
more methods are illustrated and described as separate
operations, one or more of the individual operations may be
performed concurrently, and nothing requires that the opera-
tions be performed in the order illustrated. Structures and
functionality presented as separate components in example
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements fall within the scope of
the subject matter herein.

The embodiments illustrated herein are described in suf-
ficient detail to enable those skilled in the art to practice the
teachings disclosed. Other embodiments may be used and
derived therefrom, such that structural and logical substitu-
tions and changes may be made without departing from the
scope of this disclosure. The Detailed Description, therefore,
is not to be taken in a limiting sense, and the scope of various
embodiments is defined only by the appended claims, along
with the full range of equivalents to which such claims are
entitled.

As used herein, the term “or” may be construed in either
an inclusive or exclusive sense. Moreover, plural instances
may be provided for resources, operations, or structures
described herein as a single instance. Additionally, bound-
aries between various resources, operations, modules,
engines, and data stores are somewhat arbitrary, and par-
ticular operations are illustrated in a context of specific
illustrative configurations. Other allocations of functionality
are envisioned and may fall within a scope of various
embodiments of the present disclosure. In general, structures
and functionality presented as separate resources in the
example configurations may be implemented as a combined

US 10,599,560 B2

23

structure or resource. Similarly, structures and functionality
presented as a single resource may be implemented as
separate resources. These and other variations, modifica-
tions, additions, and improvements fall within the scope of
embodiments of the present disclosure as represented by the
appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.

The invention claimed is:

1. A system comprising:

one or more computer processors;

one or more computer memories;

a set of instructions incorporated into the one or more
computer memories, the set of instructions configuring
the one or more computer processors to perform opera-
tions for automatically managing a set of memory
chunks within the one or more computer memories at
runtime for a computer application, the operations
comprising:

receiving a set of entities from the computer application,
each of the set of entities including a set of components,
wherein each component of the set of components has
one type of a set of types;

classifying the set of entities into a set of archetypes, each
archetype representing a different count of the set of
components or a different combination of types of the
set of components relative to other archetypes of the set
of archetypes;

based on a determination that one of the set of archetypes
corresponds to a new archetype, building a new
memory chunk, adding the new memory chunk to the
set of memory chunks, and populating the new memory
chunk, wherein the populating of the new memory
chunk includes adding data from the set of components
included in one or more entities of the set of entities
that are classified under the new archetype, the adding
of the data including contiguously adding the data to
ends of a set of component data arrays included in the
new memory chunk, each of the set of data arrays
included in the new memory chunk corresponding to a
respective component of the set of components
included in the one or more entities that are classified
under the new archetype.

2. The system of claim 1, wherein each component data
array of the set of component data arrays is contiguous with
a next component data array of the set of component data
arrays.

3. The system of claim 1, the operations further compris-
ing based on a determination that the one of the set of
archetypes corresponds to an existing archetype, populating
an existing memory chunk of the set of memory chunks,
wherein the populating of the existing memory chunk
includes adding data from the set of components included in
one or more entities of the set of entities that are classified
under the existing archetype, the adding of the data includ-
ing contiguously adding the data to ends of a set of com-
ponent data arrays included in the existing memory chunk,
each of the set of data arrays included in the existing
memory chunk corresponding to a respective component of
the set of components included in the one or more entities
that are classified under the existing archetype.

4. The system of claim 1, wherein the adding of the new
memory chunk to the set of memory chunks ensures that the
set of memory chunks includes at least one memory chunk
for each of the set of archetypes.

5. The system of claim 1, including receiving a first list of
components, a second list of components, and an additional

20

25

30

35

40

45

50

55

60

65

24

set of instructions for modifying components within the first
list of components, the operations further comprising:
searching the set of archetypes for one or more matching
archetypes that includes all the components from the
second list of components; and

using the additional set of instructions to modify one or

more of the components included in the one or more
matching archetypes based on a correspondence
between the one or more components and the first list
of components.

6. The system of claim 1, wherein each of the set of
entities is created as a result of a game event occurring
within the application.

7. The system of claim 1, the operations further compris-
ing:

receiving a notification of a deletion of an entity of the set

of entities;
removing data corresponding to the entity from each of
the set of data arrays included in a memory chunk of the
set of memory chunks corresponding to the entity; and

ensuring that the memory chunk is contiguously packed
by moving data corresponding to an additional entity
from an end of each of the set of data arrays to locations
of the removed data corresponding to the entity.

8. The system of claim 1, the operations further compris-
ing:

determining that an entity of the set of entities within a

first archetype has been modified;

based on a determination that the modified entity corre-

sponds to an additional new archetype, adding the
additional new archetype to the set of archetypes,
building an additional new memory chunk for the
additional new archetype, populating the additional
new memory chunk with data from the set of compo-
nents included in the modified entity, and deleting data
corresponding to the modified entity from the first
archetype;

based on a determination that the modified entity corre-

sponds to an existing second archetype in an existing
memory chunk populating the existing memory chunk
with data from the set of components included in the
modified entity, and deleting data corresponding to the
modified entity from the first archetype.

9. The system of claim 1, wherein the data from each of
the set of components included in the one or more entities of
the set of entities that are classified under the new archetype
is extracted from variables of an object-oriented-program-
ming object representing the component.

10. A computer-implemented method comprising:

receiving a set of entities from a computer application,

each of the set of entities including a set of components,
wherein each component of the set of components has
one type of a set of types;

classifying the set of entities into a set of archetypes, each

archetype representing a different count of the set of
components or a different combination of types of the
set of components relative to other archetypes of the set
of archetypes;

based on a determination that one of the set of archetypes

corresponds to a new archetype, building a new
memory chunk, adding the new memory chunk to the
set of memory chunks, and populating the new memory
chunk, wherein the populating of the new memory
chunk includes adding data from the set of components
included in one or more entities of the set of entities
that are classified under the new archetype, the adding
of the data including contiguously adding the data to

US 10,599,560 B2

25

ends of a set of component data arrays included in the
new memory chunk, each of the set of data arrays
included in the new memory chunk corresponding to a
respective component of the set of components
included in the one or more entities that are classified
under the new archetype.

11. The method of claim 10, wherein each component data
array of the set of component data arrays is contiguous with
a next component data array of the set of component data
arrays.

12. The method of claim 10, further comprising based on
a determination that the one of the set of archetypes corre-
sponds to an existing archetype, populating an existing
memory chunk of the set of memory chunks, wherein the
populating of the existing memory chunk includes adding
data from the set of components included in one or more
entities of the set of entities that are classified under the
existing archetype, the adding of the data including contigu-
ously adding the data to ends of a set of component data
arrays included in the existing memory chunk, each of the
set of data arrays included in the existing memory chunk
corresponding to a respective component of the set of
components included in the one or more entities that are
classified under the existing archetype.

13. The method of claim 10, wherein the adding of the
new memory chunk to the set of memory chunks ensures
that the set of memory chunks includes at least one memory
chunk for each of the set of archetypes.

14. The method of claim 10, including receiving a first list
of components, a second list of components, and an addi-
tional set of instructions for modifying components within
the first list of components, the operations further compris-
ing

searching the set of archetypes for one or more matching

archetypes that includes all the components from the
second list of components; and

using the additional set of instructions to modify one or

more of the components included in the one or more
matching archetypes based on a correspondence
between the one or more components and the first list
of components.

15. The method of claim 10, wherein each of the set of
entities is created as a result of a game event occurring
within the application.

16. The method of claim 10, the operations further com-
prising:

receiving a notification of a deletion of an entity of the set

of entities;
removing data corresponding to the entity from each of
the set of data arrays included in a memory chunk of the
set of memory chunks corresponding to the entity; and

ensuring that the memory chunk is contiguously packed
by moving data corresponding to an additional entity
from an end of each of the set of data arrays to locations
of the removed data corresponding to the entity.

5

10

15

20

25

35

40

45

50

26

17. The method of claim 10, the operations further com-
prising:

determining that an entity of the set of entities within a

first archetype has been modified;

based on a determination that the modified entity corre-

sponds to an additional new archetype, adding the
additional new archetype to the set of archetypes,
building an additional new memory chunk for the
additional new archetype, populating the additional
new memory chunk with data from the set of compo-
nents included in the modified entity, and deleting data
corresponding to the modified entity from the first
archetype;

based on a determination that the modified entity corre-

sponds to an existing second archetype in an existing
memory chunk, populating the existing memory chunk
with data from the set of components included in the
modified entity, and deleting data corresponding to the
modified entity from the first archetype.

18. The method of claim 10, wherein the data from each
of' the set of components included in the one or more entities
of the set of entities that are classified under the new
archetype is extracted from variables of an object-oriented-
programming object representing the component.

19. A non-transitory machine-readable medium storing a
set of instructions that, when executed by a processor, cause
the processor to perform operations comprising:

receiving a set of entities from a computer application,

each of the set of entities including a set of components,
wherein each component of the set of components has
one type of a set of types;

classifying the set of entities into a set of archetypes, each

archetype representing a different count of the set of
components or a different combination of types of the
set of components relative to other archetypes of the set
of archetypes;

based on a determination that one of the set of archetypes

corresponds to a new archetype, building a new
memory chunk, adding the new memory chunk to the
set of memory chunks, and populating the new memory
chunk, wherein the populating of the new memory
chunk includes adding data from the set of components
included in one or more entities of the set of entities
that are classified under the new archetype, the adding
of the data including contiguously adding the data to
ends of a set of component data arrays included in the
new memory chunk, each of the set of data arrays
included in the new memory chunk corresponding to a
respective component of the set of components
included in the one or more entities that are classified
under the new archetype.

20. The non-transitory machine-readable medium of
claim 19, wherein each component data array of the set of
component data arrays is contiguous with a next component
data array of the set of component data arrays.

#* #* #* #* #*

